> yard<-c(31, 31, 27, 39, 30, 32, 28, 23, 28, 35)
> area<-c(58, 51, 47, 35, 48, 42, 43, 56, 41, 41)
> park<-c(1, 1, 5, 5, 2, 4, 5, 1, 1, 3)
> dist<-c(492, 426, 400, 125, 443, 412, 201, 362, 192, 423)
> popul<-c(4412, 2061, 4407, 1933, 4029, 4180, 3444, 1683, 3020, 4459)
> price<-c(12631, 12084, 12220, 15649, 11486, 12276, 15527, 12666, 13180, 10169)
> result<-step(lm(price ~ 1), scope=list(lower-1, upper=~yard+aread+park+dist+popul), direction='forward')
> result<-step(lm(price ~ 1), scope=list(lower=~1, upper=~yard+area+park+dist+popul), direction='forward')
Start: AIC=149.52
price ~ 1
Df Sum of Sq RSS AIC
+ dist 1 16958139 8557243 140.60
+ popul 1 5431481 20083900 149.13
+ park 1 4895399 20619982 149.39
<none> 25515382 149.52
+ area 1 2806386 22708996 150.36
+ yard 1 282704 25232677 151.41
Step: AIC=140.6
price ~ dist
Df Sum of Sq RSS AIC
+ area 1 2214900 6342343 139.60
<none> 8557243 140.60
+ park 1 376540 8180703 142.15
+ popul 1 90527 8466716 142.49
+ yard 1 53104 8504139 142.53
Step: AIC=139.6
price ~ dist + area
Df Sum of Sq RSS AIC
+ park 1 2922548 3419795 135.43
<none> 6342343 139.60
+ yard 1 975693 5366650 139.93
+ popul 1 326295 6016048 141.07
Step: AIC=135.43
price ~ dist + area + park
Df Sum of Sq RSS AIC
+ yard 1 1338046 2081748 132.46
<none> 3419795 135.43
+ popul 1 879 3418916 137.42
Step: AIC=132.46
price ~ dist + area + park + yard
Df Sum of Sq RSS AIC
<none> 2081748 132.46
+ popul 1 54218 2027530 134.20
> summary(result)
Call:
lm(formula = price ~ dist + area + park + yard)
Residuals:
1 2 3 4 5 6 7 8 9 10
211.9 193.4 -451.5 -193.6 247.8 801.9 387.0 -486.6 100.3 -810.6
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3045.689 4084.218 0.746 0.48939
dist -16.446 2.489 -6.609 0.00119 **
area 230.563 61.193 3.768 0.01305 *
park 436.801 155.508 2.809 0.03760 *
yard 117.922 65.779 1.793 0.13300
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 645.3 on 5 degrees of freedom
Multiple R-squared: 0.9184, Adjusted R-squared: 0.8531
F-statistic: 14.07 on 4 and 5 DF, p-value: 0.006267
> yard<-c(31, 31, 27, 39, 30, 32, 28, 23, 28, 35)
> area<-c(58, 51, 47, 35, 48, 42, 43, 56, 41, 41)
> park<-c(1, 1, 5, 5, 2, 4, 5, 1, 1, 3)
> dist<-c(492, 426, 400, 125, 443, 412, 201, 362, 192, 423)
> popul<-c(4412, 2061, 4407, 1933, 4029, 4180, 3444, 1683, 3020, 4459)
> price<-c(12631, 12084, 12220, 15649, 11486, 12276, 15527, 12666, 13180, 10169)
> result<-step(lm(price~1), scope=list(lower=~1, upper=~yard+area+park+dist+popul), direction='both')
Start: AIC=149.52
price ~ 1
Df Sum of Sq RSS AIC
+ dist 1 16958139 8557243 140.60
+ popul 1 5431481 20083900 149.13
+ park 1 4895399 20619982 149.39
<none> 25515382 149.52
+ area 1 2806386 22708996 150.36
+ yard 1 282704 25232677 151.41
Step: AIC=140.6
price ~ dist
Df Sum of Sq RSS AIC
+ area 1 2214900 6342343 139.60
<none> 8557243 140.60
+ park 1 376540 8180703 142.15
+ popul 1 90527 8466716 142.49
+ yard 1 53104 8504139 142.53
- dist 1 16958139 25515382 149.52
Step: AIC=139.6
price ~ dist + area
Df Sum of Sq RSS AIC
+ park 1 2922548 3419795 135.43
<none> 6342343 139.60
+ yard 1 975693 5366650 139.93
- area 1 2214900 8557243 140.60
+ popul 1 326295 6016048 141.07
- dist 1 16366653 22708996 150.36
Step: AIC=135.43
price ~ dist + area + park
Df Sum of Sq RSS AIC
+ yard 1 1338046 2081748 132.46
<none> 3419795 135.43
+ popul 1 879 3418916 137.42
- park 1 2922548 6342343 139.60
- area 1 4760908 8180703 142.15
- dist 1 17088473 20508268 151.34
Step: AIC=132.46
price ~ dist + area + park + yard
Df Sum of Sq RSS AIC
<none> 2081748 132.46
+ popul 1 54218 2027530 134.20
- yard 1 1338046 3419795 135.43
- park 1 3284902 5366650 139.93
- area 1 5910682 7992431 143.91
- dist 1 18183500 20265249 153.22
> summary(result)
Call:
lm(formula = price ~ dist + area + park + yard)
Residuals:
1 2 3 4 5 6 7 8 9 10
211.9 193.4 -451.5 -193.6 247.8 801.9 387.0 -486.6 100.3 -810.6
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3045.689 4084.218 0.746 0.48939
dist -16.446 2.489 -6.609 0.00119 **
area 230.563 61.193 3.768 0.01305 *
park 436.801 155.508 2.809 0.03760 *
yard 117.922 65.779 1.793 0.13300
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 645.3 on 5 degrees of freedom
Multiple R-squared: 0.9184, Adjusted R-squared: 0.8531
F-statistic: 14.07 on 4 and 5 DF, p-value: 0.006267
> yard<-c(31, 31, 27, 39, 30, 32, 28, 23, 28, 35)
> area<-c(58, 51, 47, 35, 48, 42, 43, 56, 41, 41)
> park<-c(1, 1, 5, 5, 2, 4, 5, 1, 1, 3)
> dist<-c(492, 426, 400, 125, 443, 412, 201, 362, 192, 423)
> popul<-c(4412, 2061, 4407, 1933, 4029, 4180, 3444, 1683, 3020, 4459)
> price<-c(12631, 12084, 12220, 15649, 11486, 12276, 15527, 12666, 13180, 10169)
> result<-step(lm(price~1), scope=list(lower=~1, upper=~yard+area+park+dist+popul), direction='both')
Start: AIC=149.52
price ~ 1
Df Sum of Sq RSS AIC
+ dist 1 16958139 8557243 140.60
+ popul 1 5431481 20083900 149.13
+ park 1 4895399 20619982 149.39
<none> 25515382 149.52
+ area 1 2806386 22708996 150.36
+ yard 1 282704 25232677 151.41
Step: AIC=140.6
price ~ dist
Df Sum of Sq RSS AIC
+ area 1 2214900 6342343 139.60
<none> 8557243 140.60
+ park 1 376540 8180703 142.15
+ popul 1 90527 8466716 142.49
+ yard 1 53104 8504139 142.53
- dist 1 16958139 25515382 149.52
Step: AIC=139.6
price ~ dist + area
Df Sum of Sq RSS AIC
+ park 1 2922548 3419795 135.43
<none> 6342343 139.60
+ yard 1 975693 5366650 139.93
- area 1 2214900 8557243 140.60
+ popul 1 326295 6016048 141.07
- dist 1 16366653 22708996 150.36
Step: AIC=135.43
price ~ dist + area + park
Df Sum of Sq RSS AIC
+ yard 1 1338046 2081748 132.46
<none> 3419795 135.43
+ popul 1 879 3418916 137.42
- park 1 2922548 6342343 139.60
- area 1 4760908 8180703 142.15
- dist 1 17088473 20508268 151.34
Step: AIC=132.46
price ~ dist + area + park + yard
Df Sum of Sq RSS AIC
<none> 2081748 132.46
+ popul 1 54218 2027530 134.20
- yard 1 1338046 3419795 135.43
- park 1 3284902 5366650 139.93
- area 1 5910682 7992431 143.91
- dist 1 18183500 20265249 153.22
> summary(result)
Call:
lm(formula = price ~ dist + area + park + yard)
Residuals:
1 2 3 4 5 6 7 8 9 10
211.9 193.4 -451.5 -193.6 247.8 801.9 387.0 -486.6 100.3 -810.6
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3045.689 4084.218 0.746 0.48939
dist -16.446 2.489 -6.609 0.00119 **
area 230.563 61.193 3.768 0.01305 *
park 436.801 155.508 2.809 0.03760 *
yard 117.922 65.779 1.793 0.13300
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 645.3 on 5 degrees of freedom
Multiple R-squared: 0.9184, Adjusted R-squared: 0.8531
F-statistic: 14.07 on 4 and 5 DF, p-value: 0.006267